

SCA 4.1: A PROMISING FUTURE FOR THE SDR ECOSYSTEM

Antoine Schindler (antoine.schindler[at]thalesgroup[dot]com); Adrien Duprez

(adrien.duprez[at]thalesgroup[dot]com); Eric Saliba (eric.saliba[at]thalesgroup[dot]com);

Eric Nicollet (eric.nicollet[at]thalesgroup[dot]com).

Thales Communications & Security, Gennevilliers, France

ABSTRACT

The paper discusses the benefits predicted to be fulfilled by

the coming SCA 4.1 standard, exploring areas of

deployment performance, portability, applications costs

optimization, security and scalability. For each of those

areas, the identified benefits are presented and discussed.

Faster boot times, more portable SDR applications, more

secure architectures, optimized development costs and more

scalable solutions are foreseen, yielding to positive

conclusions regarding the potential value of SCA 4.1 for the

SDR ecosystem.

1. INTRODUCTION

As a result of the efforts done by the JTNC with active

support of WInnF, the SCA 4.1 standard, released by JTNC

in a Draft version [1] beginning of February 2015 seems

mature enough to apply for becoming the reference version

for new SDR products, as suggested by many of the

testimonials previously presented during the SCA 4.1

Preview Workshop of October 2014 [2].

Almost 10 years after SCA 2.2.2 [3] was published (May

2006) SCA 4.1 takes advantage of years of international

development experience [4] to offer a leaner standard SDR

architecture for Core Framework, Platform Devices and

Servicesand SCA applications (typically waveforms).

This paper evaluates the benefits of SCA 4.1 in terms of

deployment performance (§ ‎2), waveform portability (§ ‎3),

optimization of development costs (§ ‎4), security (§ ‎5) and

scalability (§ 6) . Those benefits are evaluated on the basis

of information gathered during the development phase and

taking into consideration the just-released Draft [1]

standard.

The content of this paper is based on a number of Thales

SDR assets: earlier prototyping studies done towards

optimization of SCA 2.2.2 for SWaP (Size, Weight and

Power) constrained radios, general expertise regarding

development of secure SDR solutions, long and strong

involvement in support and development of a Standards-

based SDR ecosystem for military radios, leadership

position in definition of two WInnF standards [5][6] that

brought reference inputs for SCA 4.1 elaboration,

themselves strongly influenced by results of the ESSOR

program [7][8][9].

2. DEPLOYMENT PERFORMANCE

For the execution of a SDR component, its connections with

the other components of a SDR application and its

configuration and management, SCA 4.1 provides the same

capabilities as SCA 2.2.2, while saving boot time, reducing

memory footprint and CPU usage.

For each step of a component deployment, this section

discusses in more details the optimizations and

improvements brought by SCA 4.1.

2.1. Component loading

The most important part of a SCA platform boot time and a

application instantiation is spent during the file system

access and more specifically during the binary and XML

files loading. One way of dealing with this issue is to reduce

the size of the loaded binaries.

As required by the SCA 2.2.2 specification [3], a component

implementing the Resource interface has to handle all the

operations of this interface (e.g. PropertySet::configure). To

be fully compliant with this specification, the component is

not only required to provide the interface, but also to

implement the required behavior (e.g. raising a

CF::InvalidConfiguration exception containing the list of

the provided properties), increasing the size of the

component’s‎binary.‎

Given this observation, the SCA 4.1 offers the ability to

reduce the number of interfaces implemented by a

component if it is not required to provide the associated

services.‎ This‎mechanism,‎ called‎ “optional inheritance”,‎ is‎

applied to all the components defined in the specification.

mailto:antoine.schindler[at]thalesgroup[dot]com
mailto:adrien.duprez[at]thalesgroup[dot]com
mailto:eric.saliba[at]thalesgroup[dot]com
mailto:eric.nicollet[at]thalesgroup[dot]com

LifeCycle

0 attribute

2 methods

PortSupplier

0 attribute

1 method

PropertySet

0 attribute

2 methods

TestableObject

0 attribute

1 method

Resource

+1 attribute

+2 methods

Application
+6 attributes
+0 method

Device

+6 attributes

+2 method

LoadableDevice

+0 attributes

+2 method

ExecutableDevice

+2 attributes

+2 method

1 attribute
8 methods

7 attributes
8 methods

7 attributes
10 methods

7 attributes
12 methods

9 attributes
14 methods

Figure 1: SCA 2.2.2 interfaces relationship

As depicted in Figure 1, an implementation of a component

can require, as defined in the SCA 2.2.2 specification, to

handle up to 9 attributes and implement 14 operations.

However, depending of the implementation, all of these

requirements are not necessary for the component to provide

the services it is supposed to offer.

Using interface segregation (SCA 4.1 specifies 27 interfaces

where SCA 2.2.2 specification‎ has‎ 18)‎ and‎ this‎ “optional‎

inheritance” mechanism, the SCA 4.1 provides a fairly fine

granularity level to allow the component developer to have

the right size for its implementation.

For example, a DeviceComponent (equivalent to a SCA

2.2.2 Device component) can implement only 1 operation

instead of the 7 attributes and the 10 operations required by

the SCA 2.2.2 specification.

This is an example among many others to use this SCA 4.1

useful feature that will help the SDR developers to

noticeably reduce the size of the binaries and, as a result, the

time needed to load them (in particular if they are retrieved

from an encryptedfile system).

2.2. Component execution and registration

The essential improvement related to component execution

and registration is that SCA 4.1 does not use the CORBA

Naming Service.

As depicted in Figure 2, a SCA 2.2.2 Resource component

deployed by an application factory requires the presence of

a CORBA Naming Service. Indeed, the SCA 2.2.2

specification indicates that a waveform component shall

bind itself in a Naming Context previously created by an

application factory. This application factory can correlate

the‎ component’s‎ reference‎ appearance‎ in‎ this‎ context‎ with‎

the end of the component instantiation.

ApplicationFactory ExecutableDevice

Resource

load(…)

execute(…)

bind(…)

NamingService

bind_new_context(...)

resolve(…)

Figure 2: SCA 2.2.2 execution and registration

Following a streamlined approach, SCA 4.1 removes the use

of the CORBA Naming Service as the way to exchange

application component re ferences, since introduction of

the‎ “push model”‎ approach makes this registration

mechanism unnecessary.

ComponentRegistry ExecutableInterface

MyResource

load(…)

execute(…)

registerComponent(…)

ApplicationFactory

Figure 3: SCA 4.1 Resource execution and registration

The‎“push model”‎promotes‎the‎registration‎of‎a‎component‎

with its manager by pushing its reference and the

information carried by this component rather than pushing a

reference that the manager will use later to pull the

information it may need to manage this component.

This concept, illustrated in Figure 3, is applicable to all SDR

components (Platform or Application), by passing a

reference and all the necessary information to the

ComponentRegistry interface, through which the component

registers itself with its manager.

The time spent by the application factory to detect that the

waveform component has bound in the Naming Context is

saved, but it can be meaningless compared to the time saved

by the removal of the Naming Service binary loading,

execution and initialization.

2.3. Component deployment

Willing to avoid the unnecessary access to the file system,

the SCA 4.1 “push model” also promotes the idea that a

same XML profile should not need to be parsed twice.

According to this idea, when a DeviceManagerComponent

will parse the XML profile of its managed

BasePlatformComponent, it will store all the information

associated with this component (e.g. allocation properties)

and provide it to the DomainManagerComponent when it

will register itself into the domain using a

ComponentRegistry interface. This optimization can save

the substantial time spend doing unnecessary XML parsing

during the DeviceManagerComponent registration into the

domain.

After the time wasted during the unnecessary file system

access, SCA 4.1 tried to reduce the number of interactions

between components. Even if the amount of time needed to

realize an interaction between two SCA components can be

negligible, the multiplication of those interactions can

become a substantial waste of time. Moreover, the CPU

usage dedicated to those interactions can also be considered

as a waste if they are not necessary.

There again, the‎“push model”‎approach allows reducing the

number of interaction needed for a component deployment.

For example, the registration of a

DeviceManagerComponent in the domain requires, in the

best case, only one method call using the

ComponentRegistry::registerComponent operation.

The same approach is used to create a connection between

two components. Where the SCA 2.2.2 specification

requires 3 operation calls using the PortSupplier interface,

the SCA 4.1 only needs 2 to realize all the required

connections between two components using their

PortAccessor interface.

The time saved by the reduction of those interactions can

individually seem meaningless but, considering that this

time is proportional to the number of components and the

number of connections between them, it can quickly become

substantial.

3. PORTABILITY

3.1. PIM IDL Profiles

3.1.1. Restructured Appendix E

One of the most promising innovations of the SCA 4.1 with

regards to better supporting waveform portability is the

restructuration of Appendix E, brought in by addition of

new Appendix E-1,‎ “Application Interface Definition

Language Platform Independent Model Profiles”,‎ and‎

captured‎ by‎ the‎ new‎ Appendix‎ E‎ name:‎ “Model Driven

Support Technologies”

Appendix E-1 fully endorses‎ the‎ WInnF‎ Standard‎ “IDL

Profiles for Platform-Independent Modeling of SDR

Applications” [6]. This brings an essential value in support

of better portability of SDR applications, as explained in the

coming chapters of this section.

The rest of Appendix E is composed of PSM-related

appendices, for CORBA or native C++ namely.

3.1.2. Support for PIM to PSM migration

As illustrated by Figure 4, and detailed in the introduction of

the referenced standards, PSM application specific

interfaces‎separate‎the‎component’s‎Business Logic from its

Used / Provided Ports, which encapsulate any mappings or

transformation to occur between the application specific

interfaces and the Operating Environment (in particular

towards the available Transport Mechanisms).

A

A

Business Logic I1

I2

I3

I1 I2 I3

 Container

Operating Environment
(incl. transport mechanism)

Used / Provided

Ports

PIM Application-

Specific Interfaces

PIM to PSM

migration

P
S

M
 A

p
p

lica
tio

n
-

S
p

ecific In
terfa

ces

Figure 4: Notional PIM to PSM migration

Source : [1] Appendix E-1, p.8 & [6], p. 3

This approach is highly consistent with what the ESSOR

program reported concerning its methodology for WF

developments [9].

3.1.3. Definition of PIM Profiles

The defined PIM Profiles are specified using a thorough

one-by-one specification approach parsing the underlying

OMG standard [10], with detailed rationale provided.

The Full PIM IDL Profile is corresponding to the legacy

SCA 2.2.2 component model, while the Lw and ULw

Profiles are defined for resource-constrained environments

such as DSP and FPGA OEs (see § ‎3.2 below).

3.1.4. Portability benefits

The previous descriptions corresponds to application of the

Separation of Concerns design paradigm, that brings a clear

separation between the Business Logic and the Container,

which allows the Business Logic to be developed largely

independently of platform assumptions, thus maximizing its

portability. In particular it enables to select CORBA or

alternate transport mechanisms, consistently with what the

core specification enables for the Core Framework.

Realization of a PIM model with a consistent set of modeled

components is one essential asset to ensure consistency of

the design, enabling the SDR application porting activity to

be essentially composed of direct porting of each of the

SDR components, plus integration with the required ports,

avoiding any modification of the functional behavior of the

set of SDR components.

The choice of the programming language for the Business

Logic is as well possibly done independently from the

underlying PIM model, which is of decisive interest in PHY

Layers where a given component may be needed, depending

on porting assumptions, in FPGA or DSP language (see

§ ‎3.2 below).

3.2. Extension towards DSP and FPGA

3.2.1. Specification of GPP Component Models

Over its releases, SCA has provided a complete Component

Model for development of GPP Components of a SDR

application, with, essentially, prescriptions regarding:

- Reconfiguration Support: the Resource interface of

SCA 2.2.2, with the equivalent set of optionally

applicable elementary interfaces in SCA 4.1,

- Connectivity: Minimum CORBA mandated in

SCA 2.2.2, a consistent PIM (with the Full IDL

Profile) to PSM (multiple incl. CORBA) in Draft

SCA 4.1,

- Operating System: the POSIX AEP until SCA 4.0,

the Full POSIX AEP since then.

As discussed in the following section, SCA 4.1 provides

consistent solutions to address the matters related to

Execution Support for DSP and FPGA OEs.

3.2.2. Flexible and consistent connectivity approach

For Connectivity, the DSP and FPGA OEs can fully benefit

from usage made by SCA 4.1 of the PIM/PSM paradigm,

which foundations are discussed in § ‎3.1 above.

At the PIM level, SCA 4.1 uses the ULw PIM IDL Profile

of WInnF IDL Profiles Standard [6], therefore bringing an

optimal solution for PIM specification of Application

Specific Interfaces for DSP and FPGA components. This

resulted from an international convergence effort realized

within the WInnF work group that developed the said

WInnF Standard, increasing the readiness level of the initial

contribution from ESSOR Architecture submitted for SCA

4.0 development (see [8]).

At PSM level, SCA 4.1 clearly allows for usage of an

unlimited set of possible of Connectivity mechanisms, as

indicated in p.7 of SCA 4.1 Appendix E-1, with standard

Connectivity mechanisms (CORBA [10], MHAL

Connectivity [11] and MOCB [12]) or proprietary solutions

being possibly used.

3.2.3. Mature POSIX-based AEPs

For Operating System, which only represents a matter for

DSP OE since FPGA do not use Operating Systems, SCA

4.1 essentially endorsed two Profiles among those allowed

by the WInnF AEPs for Resource Constrained Processors

[5], one Lightweight (Lw) Profile, and one Ultra-lightweight

(ULw) Profile.

The WInnF specification brought important improvements

to the previous achievements in successfully conducting an

international convergence effort that delivered the

underlying WInnF specification.

3.2.4. The remaining gap: Reconfiguration Support

Reconfiguration Support for DSPs and FPGAs remain

untreated, and should be a point to consider for future

standardization efforts.

3.2.5. Portability benefits

The additions reported above enable DSP and FPGA

environments to be consistently covered by SCA 4.1,

therefore significantly expanding the boundaries of what

SCA can bring for coming radio products while application

of previous SCA 2.2.2 proved to be de facto limited to GPP

environments.

This opens perspectives for significant increase of the

proportion of SDR applications being designed with high

degree of portability, while enabling conformant SDR

platforms to more easily host SDR components as well

developed in their DSP and/or FPGA processors.

4. OPTIMIZED APPLICATIONS COSTS

4.1. Application backwards compatibility

Application backwards compatibility is an optional Unit of

Functionality for the Core Framework allowing the

Operating Environment to benefit from SCA 4.1 features

(e.g. the “optional‎ inheritance”‎ mechanism), while

remaining capable to manage SCA 2.2.2 applications. This

therefore optimizes costs thanks to preservation of past

investments in SCA applications.

This helps very significantly for adoption of SCA 4.1, since

SDR platforms will possibly migrate towards SCA 4.1

without adding the costs, risks and schedule barrier to

simultaneously handle migration of existing SCA 2.2.2 SDR

applications towards SCA 4.1.

Since the application backwards compatibility Unit of

Functionality imposes some overheads compared to the

situation where the Core Framework would only comply

with SCA 4.1, and since this prevents to benefit from a

number of SCA 4.1 improvements (e.g. Naming Service

removal), final convergence towards SCA 4.1-only

architectures are seen as the end-term perspective.

4.2. Leaner SDR Applications development cycles

4.2.1. Earlier defects detection

Adoption of a generalized PIM/PSM paradigm for the SDR

Applications, as enabled by Appendix E [1]; is known for

being a powerful preventive method for improvement of the

designs, thanks to the underlying separation of concerns

between the logical design (business logic) and the physical

design (implementation specific) [13]. It is a way to detect

design defects at an early stage of the development process.

4.2.2. Easier introduction of code generation

The adoption of PIM to PSM paradigms provides ways,

thanks to automated generation of the Container code, to

increase software quality, reducing the integration risks and

the maintenance costs [13].

4.2.3. Simplification of the test phases

The number of requirements introduced by SCA 4.1 has

been reduced, and the phrasing of requirements has been

modified, when needed, to capture an identical intent while

being more prone to automated requirement verification

tanks to usage of static code analysis tools.

Even for the requirements that demands static code

inspection, SCA 4.1 is more suited for using automatic

inspection tools (e.g. AEP conformance). This is another

way to test earlier in the development process and thus

reducing the cost of the defect analysis and correction.

5. SECURITY

SCA 4.1 brings security benefits with respect to equipment

integrity as well as software assurance.

SCA 4.1 defines evolutions in components registration, by

introducing‎ the‎ “push model”‎ and‎ removing‎ the‎ Naming‎

Service. These SCA 4.1 evolutions enhance equipment

integrity for the following reasons.

The‎“push model” states that a component registration to the

domain manager requires a single transaction, as described

on Figure 5. In former SCA specification, a component used

the CORBA Naming Service to declare itself to the domain

manager, which enabled the component to sniff and use any

object reference in the same Naming Context. Furthermore,

a component registration to the domain manager expected a

multi-transactional scheme to learn all the component

information. This simpler scheme should avoid erroneous

behaviors.

Figure 5: ApplicationFactory Application Creation

Behavior

Source : [1], p.86

The “push model” also restricts the object access to

information discovering. The manager does not publish

equipment objects list anymore. The object is initialized

only with a registration reference (an instance of the

ComponentRegistry interface) provided by the

DomainManagerComponent. Access to the full

DomainManagerComponent services for the external

components is no more available unless for the components

which are required to.

The SCA 4.1 registration interface is a standalone service

(see Figure 6), and therefore the objects cannot access to

other system level interfaces.

Figure 6:Domain Manager interface transformation

Source : [14], p.3

Further, the static port connection proposal with SCA 4.1

should enhance the platform stability and control. By

statically defining the components connections, erroneous or

illicit configuration actions leading to abnormal objects

connection should be reduced, either wrong connections

between legitimate components or connections with

illegitimate components.

Software assurance should be more efficient through

introduction of the “conditional inheritance”‎mechanism for

platform and application components: by default, a

component shall no more inherit from all the interfaces (see

Figure 7). Further, SCA 4.1 allows an equipment to limit the

complexity of its Core Framework: SCA conformance can

be claimed on one of the three following Profiles:

Lightweight, Medium or Full. These features induce an

opportunity to gain assurance on the software development

(fewer services, fewer interfaces, fewer tests) reducing any

useless source code and increasing reliability.

Figure 7: Base Component UML

Source : [1], p.34

These new SCA 4.1 features and improvements reduce

implementation complexity and induce build-in SCA

equipment security efficiency. This would be helpful for

further security evaluation and accreditation.

6. SCALABILITY

SCA 2.2.2 was designed to be a one-size-fits-all solution for

SDR products (SDR applications and platforms).

This could not take into account the specificity of platforms

implementation constraints (SWAP requirements, type of

processor,‎etc…),‎and‎did‎not‎bring‎enough‎flexibility‎to‎suit‎

the needs of SDR applications.

This section discussed the scalability improvements brought

by SCA 4.1.

6.1. Core Framework Profiles

Based on the new Profiles definition (Lightweight, medium

and Full), the SCA 4.1 introduces a more scalable

architecture. The customization process is applicable to the

base components (Base Device Components and Base

Application Components) but moreover to the Framework

Control Components and the services provided by the

Operating Environment. This means that the SCA 4.1

architecture is able to adapt itself to a wide range of more or

less constrained underlying platform architectures.

6.2. Connectivity/CORBA-neutrality

One important barrier for adoption of SCA was the mandate

for CORBA usage. The removal of this obligation, often

dubbed‎ as‎ “CORBA-neutrality”,‎ thanks‎ to‎ the‎ PIM‎

description of the interfaces between the various

components of the SDR system; is a very significant

progress to facilitate adoption of SCA technology on a

broader variety of reconfigurable platforms, while

preserving the investments and performance achieved by

those having adopted a CORBA-based architecture.

6.3. Optional inheritance

The‎ “optional inheritance”‎ mechanism, as exposed

beforehand, is providing means for SDR application

components and SDR platform components to be tailored to

their strict needs, avoiding a number of implementation

overheads.

This will as well facilitate SCA 4.1 adoption since

eliminating the previous need to get familiar with interfaces

and associated concepts that are finally not used, wasting

design efforts.

SCA 4.1 is therefore much more suited to the strict needs of

the developed capabilities than SCA 2.2.2.

6.4. Nested Application

The support‎ of‎ “Nested Applications” enable to handle

applications composed of other applications, bringing

promising capabilities for elaborated configurations on

complex systems.

This will enable for eliminate the combinatory explosion of

systems with multiple options for different segments, where

an overarching application description was required for each

of the possible combinations.

This will as well facilitate integration of new capabilities

within systems.

SCA 4.1 is therefore more suited to handling of complex

systems than what SCA 2.2.2 was capable of.

7. CONCLUSIONS

This paper explored various areas where SCA 4.1 is

expected to bring key value to SDR solution developers.

Faster boot times will be experienced, thanks to

simplification of components registration mechanisms;

more portable SDR Applications will be developed, thanks

to support of PIM/PSM design paradigms coupled to high

flexibility in choice of implementation options; more secure

architectures will be available, thanks to suppression of

most vulnerable parts of previous architecture and

avoidance of non-required interfaces; optimized

development costs will be achieved thanks to leaner overall

architecture and simplification and automation of the testing

phases; last, more scalable solutions will be available,

enabling to better adapt the designs to expectations and

platform constraints.

This implies that SCA 4.1 has the potential to bring decisive

value to bring forward the SDR ecosystem, making it more

efficient for existing areas where SCA is used, and making

SCA 4.1 much more attractive for new adopters.

Reports from implementation by stakeholders will enable, in

near future, to better evaluate things, moving the knowledge

basis on SCA 4.1 from previsions, such as those reported in

this report, to implementation results.

REFERENCES

[1] JTNC,‎ “Software Communications Architecture

Specification” version 4.1<DRAFT>,
http://jtnc.mil/sca/Pages/sca1.aspx, 31 December 2014.

[2] WInnF,‎ JTNC,‎ “SCA 4.1 Preview Workshop”, Aberdeen,
Maryland, 9-10 October 2014.

[3] JPEO JTRS, “Software‎ Communications‎ Architecture‎
Specification, Version 2.2.2”,
http://jtnc.mil/sca/Pages/sca1.aspx, 15 May 2006.

[4] WInnF,‎ “SCA Standards for Defense Communications:
Global Adoption, Proven Performance”,‎
http://groups.winnforum.org/SCA_Committee.

[5] WInnF,‎ “Lw and ULw POSIX AEPs for Resource
Constrained Processors”, Version V1.0.0, WINNF-14-S-
0009, http://groups.winnforum.org/Specifications, 25 July
2014.

[6] WInnF,‎“IDL Profiles for Platform-Independent Modeling of
SDR Applications”,‎ Version‎ V1.0.1,‎ WINNF-14-S-0016,
http://groups.winnforum.org/Specifications, 25 August 2014.

[7] WInnF, “ESSOR/SCA Next LwAEP harmonization”, Version
V1.0.0, WINNF-11-I-0007-V1.0.0,
http://groups.winnforum.org/d/do/4690, 24 May 2011.

[8] WInnF,‎ “ESSOR/SCA‎ Next‎ CORBA‎ Profiles‎
harmonization”, Version V1.0.0, WINNF-11-I-0008-V1.0.0,
http://groups.winnforum.org/d/do/4691, 24 May 2011.

[9] ESSOR HDR Base WF – Methodology and Results for
Developing a Portable Coalition Waveform Software –
WinnComm’14,‎10-13 March 2014.

[10] OMG,‎ “Common Object Request Broker Architecture
(CORBA) Specification Part 1: CORBA Interfaces”, Version
3.2, formal/2011-11-01,
http://www.omg.org/spec/CORBA/3.2/Interfaces/PDF,
November 2011.

[11] JTNC Standards, Public Application Program Interfaces
(APIs), “Modem Hardware Abstraction Layer”,‎Version‎3.0,‎
http://jtnc.mil/sca/Pages/api1.aspx, 02 October 2013.

[12] JTNC Standards, Public Application Program Interfaces
(APIs), “MHAL on Chip Bus”,‎ Version‎ 1.1.5,
http://jtnc.mil/sca/Pages/api1.aspx, 26 June 2013.

[13] OMG,‎ “Model Driven Architecture (MDA) Guide”,‎Version‎
2.0, ormsc/2014-06-01,
http://www.omg.org/mda/presentations.htm, June 2014.

[14] Chalena M. Jimenez, Kevin W. Richardson, and Donald R.
Stephens, JTRS,‎ “SCA4‎ – An‎ Evolved‎ Framework”,
http://jtnc.mil/sca/Pages/references1.aspx, 24 July 2012.

http://jtnc.mil/sca/Pages/sca1.aspx
http://jtnc.mil/sca/Pages/sca1.aspx
http://groups.winnforum.org/SCA_Committee
http://groups.winnforum.org/Specifications
http://groups.winnforum.org/Specifications
http://groups.winnforum.org/d/do/4690
http://groups.winnforum.org/d/do/4691
http://www.omg.org/spec/CORBA/3.2/Interfaces/PDF
http://jtnc.mil/sca/Pages/api1.aspx
http://jtnc.mil/sca/Pages/api1.aspx
http://www.omg.org/mda/presentations.htm
http://jtnc.mil/sca/Pages/references1.aspx

